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In addition to experimental studies, computational models provide valuable information about colony devel-

opment in scleractinian corals. Using our simulation model, we show how environmental factors such as

nutrient distribution and light availability affect growth patterns of coral colonies. To compare the simulated

coral growth forms with those of real coral colonies, we quantitatively compared our modelling results with

coral colonies of the morphologically variable Caribbean coral genus Madracis. Madracis species encompass

a relatively large morphological variation in colony morphology and hence represent a suitable genus to com-

pare, for the first time, simulated and real coral growth forms in three dimensions using a quantitative

approach. This quantitative analysis of three-dimensional growth forms is based on a number of morpho-

metric parameters (such as branch thickness, branch spacing, etc.). Our results show that simulated coral

morphologies share several morphological features with real coral colonies (M. mirabilis, M. decactis,

M. formosa and M. carmabi ). A significant correlation was found between branch thickness and branch spa-

cing for both real and simulated growth forms. Our present model is able to partly capture the

morphological variation in closely related and morphologically variable coral species of the genus Madracis.

Keywords: corals; morphogenesis; morphology; simulation; CT scan; Madracis
1. INTRODUCTION
Scleractinian corals exhibit great inter- and intraspecific

variation in coral colony morphology (e.g. Veron 1995;

Bruno & Edmunds 1997). Intra-specific variation often

arises from plasticity in a colony’s growth process in

response to variable environmental conditions, such as

flow speed, availability of light and availability of dissolved

inorganic carbon (Muko et al. 2000; Todd et al. 2004;

Todd 2008). Because genetic and environmental factors

determine a colony’s three-dimensional structure, the rela-

tive importance of either factor is often difficult to

determine. Experimental studies whereby corals are grown

under different environmental conditions are often limited

by the slow growth rates of corals and difficulties with con-

trolling environmental parameters of the system. Therefore,

plastic responses to environmental changes are studied in

relatively few (about 17) coral species (Todd 2008).

To determine the degree of phenotypic plasticity

among colonies of the same species under variable

environmental conditions, various morphometric traits
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are measured to quantitatively assess whether changes in

coral colony growth and form correlate with varying

environmental factors (e.g. Bruno & Edmunds 1997).

Morphological variation in corals exists on different

scales, from differences in corallite structure within a

single colony (Foster 1979) to variation among colonies

in a single species. The present study aims to describe

variability at the colony morphology level in species of

the Caribbean coral genus Madracis. The Madracis

species are characterized by the encrusting (M. pharensis),

nodular (M. decactis) or branching colonies (M. formosa,

M. mirabilis, M. carmabi; Wells 1973a,b; Fenner 1993;

Vermeij et al. 2003). Morphological traits such as the

branch diameter and branch spacing in M. mirabilis are

under the influence of the environment (Bruno &

Edmunds 1997). Other corals, such as Stylophora pistilata

and Acropora eurystoma, also tend to have a certain degree

of phenotypic plasticity (Borgiorni et al. 2003; Shaish

et al. 2007). Some corals, on the other hand, show very

little or no phenotypic response to environment (e.g.

Pavona cactus; Willis 1985), suggesting that in this species

colony morphology is primarily driven by genetic factors.

Computational models support the evidence of

phenotypic plasticity found in biological experiments.

The amount of light and nutrient distribution have been
This journal is q 2010 The Royal Society
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Figure 1. Volume rendering of the CT scans of real coral colonies (scale bar, 2 cm).
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used to simulate a range of coral morphologies under

different environmental conditions (Graus & MacIntyre

1982; Muko et al. 2000; Kaandorp & Kübler 2001;

Merks et al. 2004; Kaandorp et al. 2005). Using a compu-

tational approach, Kaandorp et al. (2005) found that

gradients in dissolved inorganic carbon (DIC) around

coral colonies are responsible for branching colony mor-

phologies. A field experiment to investigate the same

phenomenon would be practically impossible due to the

slow growth of colonies in the field and problems associ-

ated with measuring DIC at the sub-millimetre scale as

used in the computational study. Therefore, in addition

to field experiments, computational models are an impor-

tant alternative to study processes at very different time

and spatial scales.

Here, we validate the previously developed coral

growth model (Merks et al. 2004), which combines the

effects of variable environmental parameters with vari-

ation in species-specific information (i.e. distance

between polyps and polyp height; Kaandorp et al.

2005). We compare the modelling results with colonies

of different Madracis species. The model is suitable for

simulating corals that have non-polymorphic polyps

(e.g. Madracis species), since there is no differentiation

in axial and radial polyps in M. mirabilis colonies. This

contrasts with, for example, Acropora species, where a

fast growing axial polyp occurs at the tip of each branch

(Wallace 1999), which differs from the other (radial)

polyps on the same branch. The simulations produced

by the growth model produce morphologies that resemble

the shape of coral colonies belonging to the Caribbean

coral species M. mirabilis (figure 1a). In general, objects

generated by the model can be characterized by very regu-

lar branch spacing. This makes them suitable for

comparison with real colonies of M. mirabilis (figure 1a)

that show similar regular branch spacing.
Proc. R. Soc. B
Verification of the model by quantitative comparison of

colony morphologies between simulation results and real

coral colonies is crucial for further exploration of factors

involved in coral colony development. For a comparative

analysis, we can use quantitative measurements of such

morphological traits as branch spacing, branch thickness,

branching angle and branching rate of real coral colonies

and simulated growth forms. A recently developed mor-

phometric method is using high resolution computed

tomography (CT) scans of coral colonies to provide

such information (Kruszynski et al. 2007). In the present

study, a quantitative morphological analysis is applied to a

range of simulated morphologies and to CT scans of real

colonies of several coral species belonging to the genus

Madracis, namely M. decactis, M. carmabi, M. formosa

and M. mirabilis. The relation between several morpho-

logical traits of the coral colonies will be investigated.

This quantitative approach allows for classification of

the coral morphologies based on the shape of the

colony. We will demonstrate that coral morphologies

can be classified using a set of morphometric traits.
2. MATERIAL AND METHODS
(a) Data acquisition

M. mirabilis (n ¼ 3), M. carmabi (n ¼ 10), M. decactis (n ¼

10) and M. formosa (n ¼ 7) colonies were collected at

depths between 6 and 50 m on Curaçao (Netherlands Antil-

les, 128 N, 698 W). Three-dimensional images of these

colonies were obtained using CT scanning techniques

(Kaandorp & Kübler 2001). The CT scans were made at a

resolution with a voxel (i.e. volumetric pixel) size of 0.33 �
0.33 � 1.50 mm (M. carmabi, M. decactis and M. formosa)

and almost isotropic voxel size of 0.25 � 0.25 � 0.30 mm

(M. mirabilis). The number of slices per colony varies

between 45 and 765, depending on overall colony size. The

http://rspb.royalsocietypublishing.org/
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Figure 2. (a) Morphological skeleton generated from a volume, (b) branch thickness (da, white sphere; db, black sphere; dc, grey
sphere), (c) branch spacing (br-spacing) and (d) branching angle relative to the growth direction (g_angle).
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three-dimensional data were edited (the substrate plate on

which samples were lying was cropped) and visualized

using the open source OSIRIX imaging software. In figure 1,

these datasets are visualized using volume rendering.

Three-dimensional objects generated by three-dimensional

surface rendering are used for the morphometric analyses

described below.

(b) Morphometrics

By using CT scans in morphometric software (Kruszynski et al.

2007), some of the key morphometric features of the coral

colonies can be measured. Morphometric analyses start with

the construction of a morphological skeleton of each three-

dimensional object, which consists of the medial axis of each

branch, shown in figure 2a. This is done by the skeletonization

algorithm described in Kruszynski et al. (2007).

By combining volumetric information and the morpho-

logical skeleton derived from the medial axis it is possible

to measure the following morphological parameters. Branch

thickness at the beginning of a branching point is defined

by the diameter (da) of the white sphere in figure 2b.

The diameter (db) of the black sphere (figure 2b) defines

the branch thickness after branching. The diameter (dc) of

the grey sphere located at the endpoint of a branch defines

the thickness of a branch tip. Branching angle (b_angle) is

measured between the lines connecting centre points of the

a-sphere (white) and b-sphere (black). Branching angle rela-

tive to the growth direction (g_angle) is measured between

the positive y-axis and a branch (figure 2d). Branching rate

(rb) is defined as the length of the edge connecting two suc-

cessive a-spheres. Branch spacing (br_spacing) is equal to the

radius of a sphere centred at the branch tip, which reaches

the closest branch (figure 2c). The same morphological

features were measured in simulated objects to allow a com-

parison of these parameters between simulated and real coral
Proc. R. Soc. B
colonies. More detailed information about the algorithms

used by the morphometric software can be found in

Kruszynski et al. (2007).
(c) Simulations with the accretive growth model

An accretive growth model was used to simulate coral mor-

phologies (Merks et al. 2004; Kaandorp et al. 2005). The

model simulates the growth of the colony skeleton as an accre-

tive process whereby subsequent growth layers are deposited on

top of the previous one as the coral colony grows. The geome-

try of each layer is represented by a triangulated surface. The

distance l between the two layers (i.e. skeleton thickness) is

assumed to be linearly dependent on the amount of absorbed

nutrients and local light intensity:

l ¼ ð1� aÞ~ncnutrient
i þ aclight

i ; 0 � a � 1; ð2:1Þ

where ~n denotes the average normal at vertex i, ci denotes

the amount of absorbed nutrients or light, and a denotes the

parameter controlling relative contribution of light intensity

and nutrient concentration to the growth process.

The main assumption made in the model is that the

growth of the skeleton is limited by the amount of local avail-

ability of DIC and light in the environment. Higher DIC

availability promotes calcification, depending on light avail-

ability (Gattuso et al. 1999). Branching in the simulated

object emerges from competition between the polyps for

available nutrients (Merks et al. 2004).

The simulation occurs within a three-dimensional volume

(i.e. simulation box; figure 3). As an initial object, a sphere is

placed in the middle of the volume on the bottom plane.

Simulated DIC propagates through the volume by means

of diffusion. The top plane of the simulation box acts as

source, and the bottom plane and the surface of the simulated

object as a sink for nutrients. The diffusion is modelled using

http://rspb.royalsocietypublishing.org/


source plane

substrate plane

Figure 3. Simulation set-up. A growing object bounded by
the simulation box with a source plane on the top and the

substrate plane at the bottom.

light 

intensity

light 

intensity

surface diffusion

surface diffusion

(a)

(b)

Figure 4. Morphospace of simulated coral colonies in two
different environments: (a) nutrient source is above the

object (i.e. mimicking the presence of competing colonies
near the simulated colony); (b) side planes act also as the
nutrient source (i.e. mimicking the absence of competing
colonies near the simulated colony). The axes represent par-

ameters that can be gradually changed in order to change
colony morphology. Light intensity is the a parameter from
equation (2.1). Surface diffusion is the diffusion constant D
in equation (2.2).
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the lattice Boltzmann method (Chopard & Droz 1998; Succi

2001). The nutrient distribution is recomputed after each

growth step of the simulated object. Different boundary con-

ditions can be applied: nutrient source at the top plane or

additional nutrient source from all four side planes. These

conditions were assumed to represent situations whereby the

nutrient supply towards an isolated, simulated colony occurs

with or without competition from neighbouring colonies,

respectively.

The model uses several species-specific parameters such as

distance between polyps and polyp height. The latter is mod-

elled by the absorption of nutrients at a short distance from

the skeleton surface. By varying environmental modelling par-

ameters such as light intensity, nutrient availability and the

degree of diffusion of the nutrients across the object surface,

we simulate various morphologies. The translocation of

absorbed nutrients between the neighbouring polyps is

modelled by lateral diffusion across the surface of the object,

@cðx; tÞ
@t

¼ Dr2cðx; tÞ; ð2:2Þ

where c is the concentration of nutrients at point x, t the time

and D the diffusion coefficient.

(d) Measurements

The quantification of the morphometric parameters of the

simulated corals and CT scans is presented as a series of

histograms (see the electronic supplementary material).

Every branch, branching angle and other features are

measured for each colony resulting in a large number

(order of 100) of measurements per colony. For each

colony a distribution of each measured morphological trait

(e.g. branch thickness) is calculated. Subsequent morpho-

logical analysis is carried out based on these distributions.

(e) Statistical analysis

Data were normalized to allow the comparison of dimension-

less descriptors of real and simulated coral morphologies.

Additionally, outliers were removed using the extreme studen-

tized deviate (ESD) many-outlier procedure (k ¼ 3, a ¼ 0.05;

Rosner 1983). Correlation analyses were used to detect

relationships among the descriptors of colonies’ morphologi-

cal traits. The correlation matrix between all measured

parameters and corresponding p-values can be found in the

electronic supplementary material. Scatter plots for all pairs
Proc. R. Soc. B
of variables are presented in the electronic supplementary

material, figure SA.3. For comparison between real and simu-

lated coral morphologies we use multivariate data analyses. We

carried out principal component analysis (PCA), discriminant

analysis (DA) and multivariate analysis of variance

(MANOVA) methods on normalized variables. DA was used

to classify samples with quadratic discriminant function.

Multi-dimensional scaling (MDS) was also applied on the dis-

tance matrix to visualize dissimilarities between the samples in

the Euclidean two-dimensional space.
3. RESULTS
The range of simulated coral morphologies in response to

interacting levels of light and nutrient diffusion across the

coral colony’s surface is given in figure 4. By gradually

increasing the values of two model parameters for light

intensity and surface diffusion, thin-branched mor-

phologies are transformed into more compact growth

forms.

A complete overview of all measured morphological

traits of the simulations and real coral colonies can be

found in the electronic supplementary material, A.8 histo-

grams. We found three significantly (p , 0.0001)

correlated variables in both simulated and real shapes.

The strongest linear correlation (r ¼ 0.73, p , 0.0001)

was observed between branch spacing (br_spacing) and

branching rate (rb). Branching rate (rb) is also correlated

(r ¼ 0.68, p , 0.0001) with branch thickness (db). In

addition to linear correlation (r ¼ 0.67, p , 0.0001)

between branch thickness (db) and branch spacing

(br_spacing), a scatter plot of these two variables

(figure 5) shows that species tend to group more among

each other than with colonies of other species. Scatter

plots and correlation coefficients of all other variables

can be found in the electronic supplementary material, A3.

Morphological variation is illustrated using a PCA

scatter plot for the first two principal components (PC1

http://rspb.royalsocietypublishing.org/
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Figure 5. A scatter plot of the correlation between branch thickness (db) and branch spacing (br_spacing). In coloured labels of
real corals the first three characters denote the name of the species (i.e. Mir ¼M. mirabilis, For ¼M. formosa, Dec ¼M. decactis
and Car ¼M. carmabi), followed by the identification number in our coral database. Simulated growth forms are denoted using

black labels, where the simulated environment (env1 ¼ one source plane or env4 ¼ four additional source planes) is followed by
the value of surface diffusion coefficient. In simulations where the influence of light is taken into account (light1) the value of
the surface diffusion coefficient is followed by the value of the light intensity parameter.
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and PC2; figure 6). The simulations and M. mirabilis

species are mostly distinguished from the other species

by the first principal component. PC1 and PC2 together

describe 68 per cent of variance in the dataset. Other

principal components are not sufficient for the discrimi-

nation of the samples. A DA applied to the first two

PCs shows the classification of the species and simu-

lations (see the electronic supplementary material, A6).

By testing different subsets of variables we found that

three morphological traits are most suitable to discrimi-

nate between different coral species: the thickness in the

middle of the branch (db), branch spacing (br_spacing)

and the ratio da/rb. A visualization of this parameter

space with MDS is presented in the electronic

supplementary material, figure SA.5.

The significance of the dissimilarities between the

species (including simulations) was analysed using

MANOVA. In this analysis five groups were compared:

(i) M. mirabilis; (ii) M. decactis; (iii) M. carmabi; (iv)

M. formosa; (v) simulations. The number of dimensions

containing group means was d ¼ 2 (a ¼ 1%, p , 0.001,

Wilk’s l ¼ 0.022). Therefore, we used the first two cano-

nical vectors (CVs) to visualize the results. The

MANOVA plot of the first two CVs is presented in

figure 7. Simulations form a close group with two outliers

(env1-0 and env1-002). Real corals (except for

M. mirabilis) form a group with M. formosa in the middle
Proc. R. Soc. B
and M. carmabi and M. decactis on the separate ends of

the group. M. mirabilis lies between the simulations and

other coral species. The group that lies the closest to the

simulations is M. mirabilis. A DA applied to the first two

CVs shows the classification of the species and simulations

(see the electronic supplementary material, A7).
4. DISCUSSION
The comparative morphological analysis between simu-

lations and real coral colonies shows that simulated

forms share three morphological features with Madracis

species described in this paper. Branch thickness (db),

branching rate (rb) and branch spacing (br_spacing) are

the basic traits that describe morphology of the branching

shapes. Positive correlations between these traits show

that in all species in this study the compactness of the

colony is preserved. The same relationships between mor-

phological features are also observed in the simulated

forms. This supports assumptions made in our compu-

tational model that gradients of DIC and light

availability in the direct environment of the colony play

an important role in the shaping of corals (Merks et al.

2004; Kaandorp et al. 2005).

In figure 5, samples of the same species group together,

with few outliers (e.g. Car436, Dec426, For421). However, a

better discrimination between the species can be made

http://rspb.royalsocietypublishing.org/
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using multivariate analysis. In the MANOVA plot in figure 7,

we can distinguish two groups: one group is the simulations

and the second group consists of the three species M. car-

mabi, M. decactis and M. formosa. Madracis mirabilis

lies closer to the simulations except for one sample

(Mir393). This can be explained by the regular branching

pattern of this species. The regularity of the branching pat-

terns is measured by the standard deviation of the branch

spacing (br_spacing); see histograms in the electronic sup-

plementary material. A lower value of the standard

deviation indicates a higher regularity. We inspected the

linear combinations of variables that form the first two CVs

in the multi-variate analysis (MANOVA). Variables that con-

tributed the most to these vectors were branch thickness (db),

branching angle (b_angle) and branch spacing (br_spacing).

Therefore, these morphological traits differ the most across

the species and simulations.

The quantitative validation of our coral growth model

demonstrates its ability to simulate a certain group of real

corals. The simulated morphologies approximate the

morphology of M. mirabilis colonies (electronic sup-

plementary material, figure A.7), confirming an earlier

study that compared simulated and coral colonies quali-

tatively (Kaandorp et al. 2005). However, the accretive

growth model in its present state is not sufficient to simu-

late all colony morphologies of the Madracis species

shown in this analysis. For instance, such morphologies

as that of M. formosa in figure 1d, cannot be generated

because of its irregular branching pattern. Some thick

branched simulations (env1-002 in figure 7) also resemble

the morphology of M. decactis colonies.

Among model parameters there are two important

environmental factors (i.e. light intensity and nutrient

source distribution) and one intrinsic factor (nutrient sur-

face redistribution). These factors are known to have an

effect on a coral colony morphology (Todd 2008). Hydro-

dynamics, the structure of individual corallites and inter-

polyp communication are not modelled in the present

study. Nevertheless, the present study has shown that

basic principles of the coral colony morphogenesis can be

captured in a computational model. The demonstrated

range of simulated shapes (figure 4) can be significantly

extended in at least two additional dimensions: first, by

incorporating hydrodynamics into the model; and

second, by adding physiological or genetic factors that

will regulate the growth of a colony from within.
This work was funded by the Netherlands Organization for
Scientific Research (NWO), VIEW project (no. 643100601).
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